Post by Stingray on Jul 15, 2008 4:02:33 GMT -4
Mil Mi-28 "Havoc"
1982
--------------------------------------------------------------------------------
www.aviastar.org/helicopters_eng/mi-28.php
First flown in November 1982, and designed to fulfil the same role as the American AH-64 Apache which it generally resembles, the agile Mi-28 'Havoc' military helicopter was scheduled to enter full service with the CIS forces in 1992, but lost out to the Kamov Ka-50. The three prototypes had a conventional three-bladed tail rotor but this has since been replaced by a 'delta 3' x-configured rotor comprising two independent two-bladed propellers mounted on the same shaft. The gunner, seated in a heavily-armoured front cockpit ahead of the pilot, controls a 30mm cannon normally used on ground vehicles. This is mounted under the nose, which contains a low light level TV and FLIR night control systems. Stub wings, each fitted with two hardpoints, can carry AT-6 'Spiral' radio-guided ATMs, UV-20 pods, or fuel tanks. Infra-red suppressors and decoy dispensers are also fitted to the 'Havoc', which is designed to offer high survivability in battle.
--D.Donald "The Complete Encyclopedia of World Aircraft", 1997
TYPE: Attack helicopter.
PROGRAMME: Design started 1980 under Marat N Tishchenko; first of two flying Mi-28 prototypes (012) flew 10 November 1982; each prototype different: first and second (022) had upward-pointing exhaust diffusers and fixed undernose fairing for electro-optic equipment; first also had conventional three-blade tail rotor; second replaced this with the definitive "Delta-H" configuration. The first Mi-28A (032) introduced the definitive downward-pointing exhaust suppressors and flew in January 1988; second Mi-28A prototype (042) demonstrated at Moscow in 1992 and represented the intended production configuration. It had the definitive moving E-O sensor turret undernose, downward-pointing exhaust diffusers and wingtip electronics/chaff dispenser pods; small-scale pre-series production planned, but not initiated, by Rostvertol, Rostov-on-Don, which stated in mid-2001 that it was ready to begin series production.
CURRENT VERSIONS:
Mi-28: First two prototypes with 1,434kW TV3-117BM engines and VR-28 gearbox.
Mi-28A (Type 280): Basic version, as described in detail, Third and fourth aircraft built.
Mi-28N: (Nochnoy: Night): Unofficial names: Night Hunter and Night Pirate. Added night/all-weather operating capability. Russian Army funding announced January 1994; demonstrator (014) modified from first Mi-28 prototype (012); first hover 14 November 1995; formal roll-out 16 August 1996; first flight 30 April 1997. Mast-mounted 360° scan millimetre wave Kinzhal V or Arbalet radar (pod soon enlarged in vertical plane); FLIR ball beneath missile-guidance nose radome and above new shuttered turret for optical/laser sensors, including Zenit low-light-level TV. EFIS cockpit. Armament of production version to include 9M114 Shturm (AT-6 'Spiral') or 9M120 Vikhr/Ataka (AT-12 'Swinger') ASMs and Igla (SA-16 'Gimlet') AAMs and R-73 AAMs. New composites rotor with sweptback blade tips added subsequently. Mi-28N introduced uprated VR-29 transmission and IKBO integrated flight/weapon aiming system, with automatic terrain-following and automatic target search, detection, identification and (in formations of Mi-28Ns) allocation; Ramenskoye Breo-28N mission control system.
Second prototype Mi-28N due for completion in first quarter of 2003 and will undertake bulk of state testing, which expected to occupy minimum of three and maximum of five years, after which it is intended to begin quantity production for the Russian armed forces and export customers.
Total of five trials Mi-28Ns to be built by Rostvertol; TV3-117VMA engines initially, but 1,839kW Klimov VK-2500s to be installed later. Second helicopter funded jointly by Rostvertol and Southwest Sberbank.
Versions projected for naval amphibious assault support and air-to-air missions.
Mi-28NEh: (Nochnoy, Ehksport: Night, Export): Version of above offered to South Korea in 2000. Evaluated by Swedish Army in 2001 against Boeing AH-64 Apache and Eurocopter Tiger.
COSTS: Mi-28N development cost US$150 million (2000); unit cost approximately US$15 million to US$16 million (2002).
DESIGN FEATURES: Conventional gunship configuration, with two crew in stepped cockpits; original three-blade tail rotor superseded by low noise 'scissors' or "Delta-H" type comprising two independent two-blade rotors set as narrow X (35°/145°) on same shaft with self-lubricating bearings; resulting flapping freedom relieves flight loads; agility enhanced by doubling hinge offset of main rotor blades compared with Mi-24; survivability emphasised; crew compartments protected by titanium and ceramic armour and armoured glass transparencies; single hit will not knock out both engines; new composites main rotor can withstand hit from round of up to 30mm calibre; vital units and parts are redundant, widely separated and shielded by the less vital; multiple self-sealing fuel tanks in centre-fuselage enclosed in composites second skin, outside metal fuselage skin; no explosion, fire or fuel leakage results if tanks hit by bullet or shell fragment; energy absorbing seats and landing gear protect crew in crash landing at descent rate of 12m/s; crew doors are rearward-hinged, to open quickly and remain open in emergency; parachutes are mandatory for Russian Federation and Associated States (CIS) military helicopter aircrew; if Mi-28 crew had to parachute, emergency system would jettison doors, blast away stub-wings, and inflate bladder beneath each door sill; as crew jumped, they would bounce off bladders and clear main landing gear; no provision for rotor separation; port-side door, aft of wing, provides access to avionics compartment large enough to permit combat rescue of two or three persons on ground, although it lacks windows, heating and ventilation.
Hand crank, inserted into end of each stub-wing, enables stores of up to 500kg to be winched on to pylons without hoists or ground equipment; current 30mm gun is identical with that of RFAS army ground vehicles and uses same ammunition; jamming averted by attaching twin ammunition boxes to sides of gun mounting, so that they turn, elevate and depress with gun; main rotor shaft has 5° forward tilt, providing tail rotor clearance; transmission capable of running without oil for 20 to 30 minutes; main rotor rpm 242; with main rotor blades and wings removed, helicopter is air-transportable in An-22 or Il-76 freighter.
FLYING CONTROLS: Hydraulically powered mechanical type; horizontal stabiliser linked to collective; controls for pilot only.
STRUCTURE: Five-blade main rotor; blades have very cambered high-lift section and sweptback tip leading edge; full-span upswept tab on trailing-edge of each blade; structure comprises numerically controlled, spirally wound glass fibre D-spar, blade pockets of Kevlar-like material with Nomex-like honeycomb core, and titanium erosion snip on leading-edge; each blade has single elastomeric root bearing, mechanical droop stop and hydraulic drag damper; four-blade GFRP tail rotor with elastomeric bearings for flapping; rotor brake lever on starboard side of cockpit; strong and simple machined titanium main rotor head with elastomeric bearings, requiring no lubrication; power output shafts from engines drive main gearbox from each side; tail rotor gearbox, at base of tail pylon, driven by aluminium alloy shaft inside composites duct on top of tailboom; sweptback mid-mounted wings have light alloy primary box structure, leading- and trailing-edges of composites; no wing movable surfaces; provision for countermeasures pod on each wingtip, housing chaff/flare dispensers and sensors, probably RWR; light alloy semi-monocoque fuselage, with titanium armour around cockpits and vulnerable areas; composites access door aft of wing on port side; swept fin has light alloy primary box structure, composites leading- and trailing-edges; cooling air intake at base of fin leading-edge, exhaust at top of trailing-edge; two-position composites horizontal stabiliser.
LANDING GEAR: Non- retractable, tailwheel type; single wheel on each unit; mainwheel tyres size 720x320, pressure 5.40 bar; castoring tailwheel with tyre size 480x200.
POWER PLANT: Two Klimov TV3-117VMA turboshafts, each 1,636kW, in pod above each wingroot; three jetpipes inside downward-deflected composites nozzle fairing on each side of third prototype shown in Paris 1989; upward deflecting type also tested. Deflectors for dust and foreign objects forward of air intakes, which are de-iced by engine bleed air. Internal fuel capacity 1,720 litres. Provision for four external fuel tanks on underwing pylons.
ACCOMMODATION: Navigator/gunner in front cockpit; pilot behind, on elevated seat; transverse armoured bulkhead between; flat non-glint tinted transparencies of armoured glass; navigator/gunner's door on port side, pilot's door on starboard side.
SYSTEMS: Cockpits air conditioned and pressurised by engine bleed air. Duplicated hydraulic systems, pressure 152 bar. 208V AC electrical system supplied by two generators on accessory section of main gearbox, ensuring continued supply during autorotation. Low-airspeed system standard, giving speed and drift via main rotor blade-tip pitot tubes at -50 to +70km/h in forward flight, and ±70km/h in sideways flight. Main and tail rotor blades electrically de-iced. Ivchenko AI-9V APU in rear of main pylon structure supplies compressed air for engine starting and to drive small turbine for preflight ground checks.
AVIONICS: Comms: UHF/VHF nav/com; small IFF fairing each side of nose and tail.
Instrumentation: Conventional IFR instrumentation, with autostabilisation, autohover, and hover/heading hold lock in attack mode; pilot has HUD and centrally mounted CRT for basic TV; aircraft designed for use with night vision goggles.
Mission: Radio for missile guidance in nose radome. Daylight optical weapons sight and laser range-finder in gyrostabilised and double-glazed nose turret above gun, with which it rotates through ±110°; wiper on outer glass protects inner optically flat panel.
Self-defence: Two fixed IR sensors on initial basic production Mi-28; IR suppressors, radar and laser warning receivers standard; optional countermeasures pod on each wingtip, housing chaff/flare dispensers and sensors, probably RWR. Mi-28N has integrated Vitebsk DASS with Pastel RWR, Mak IR warning system, Platan jammer and UV-26 flare dispensers.
EQUIPMENT: Two slots, one above the other on port side of tailboom, for colour-coded identification flares. Three pairs of rectangular formation-keeping lights in top of tailboom; further pair in top of main rotor pylon fairing.
ARMAMENT: One 2A42 30mm turret-mounted gun (with 250 rounds in side-mounted boxes) in NPPU-28 mount at nose, able to rotate ±110°, elevate 13° and depress 40°; maximum rate of fire 900 rds/min air-to-air and air-to ground. (New specially designed gun under development.) Two pylons under each stub-wing, each with capacity of 480kg, typically for total of sixteen 9M114 Shturm C (AT-6 'Spiral') radio-guided tube-launched antitank missiles and two UB-20 pods of eighty 80mm S-8 or twenty 122mm S-13 rockets or two UPK-23-250 gun pods. Alternative ATMs include Shipunov 9M120/9M121F Vikhr/Ataka and 9A-2200; up to eight 9M39 Igla-V AAMs in place of ATMs; in minelaying role can carry two KGMU-2 dispensers. Main 2A42 gun fired and guided weapons launched normally only from front cockpit; unguided rockets fired from both cockpits. (When fixed, gun can also be fired from rear cockpit.)
--Jane's All the World's Aircraft, 2004-2005
Technical data for Mi-28
Crew: 2, engine: 2 x Klimov TV3-117VM turboshaft, rated at 1620kW, main rotor diameter: 17.2m, length with rotors turning: 21.6m, height: 3.82m, take-off weight: 11200kg, empty weight: 7000kg, fuel: 1337kg, max speed: 300km/h, cruising speed: 270km/h, rate of climb: 13.6m/s, service ceiling: 5800m, hovering ceiling: 3500m, range with max fuel: 460km
--------------------------------------------------------------------------------
Mil Mi-28N "Night Havoc", "Night Hunter"
1996
www.aviastar.org/helicopters_eng/mi-28n.php
The "Night Havoc" helicopter first flew in November 1996 and the test procedures are scheduled for completion during 1999. The Night Havoc helicopter retains most of the structural design of the Mi-28. The main difference is the installation of an integrated electronic combat system. Other modifications include the main gearbox for transmitting higher power to the rotor; new design of high efficiency blades with swept- shaped tips; an engine fuel injection control system for high power operating modes.
The main sensors of the integrated electronic combat system are the microwave radar antenna mounted above the rotor head and a FLIR (forward looking infrared) system. The integrated combat system uses onboard processing to display the helicopter location on a moving map indicator, and to show the flight, systems and target information on liquid crystal displays. The crew are equipped with night vision goggles.
-- www.airshow.ru
Added night/all-weather operating capability. Russian Army funding announced January 1994; demonstrator (014) modified from first Mi-28 prototype (012); first hover 14 November 1995; formal roll-out 16 August 1996; first flight 30 April 1997. Mast-mounted 360° scan millimetre wave Kinzhal V or Arbalet radar (pod soon enlarged in vertical plane); FLIR ball beneath missile-guidance nose radome and above new shuttered turret for optical/laser sensors, including Zenit low-light-level TV. EFIS cockpit. Armament of production version to include 9M114 Shturm (AT-6 'Spiral') or 9M120 Vikhr/Ataka (AT-12 'Swinger') ASMs and Igla (SA-16 'Gimlet') AAMs and R-73 AAMs. New composites rotor with sweptback blade tips added subsequently. Mi-28N introduced uprated VR-29 transmission and IKBO integrated flight/weapon aiming system, with automatic terrain-following and automatic target search, detection, identification and (in formations of Mi-28Ns) allocation; Ramenskoye Breo-28N mission control system.
Second prototype Mi-28N due for completion in first quarter of 2003 and will undertake bulk of state testing, which expected to occupy minimum of three and maximum of five years, after which it is intended to begin quantity production for the Russian armed forces and export customers.
Total of five trials Mi-28Ns to be built by Rostvertol; TV3-117VMA engines initially, but 1,839kW Klimov VK-2500s to be installed later. Second helicopter funded jointly by Rostvertol and Southwest Sberbank.
--Jane's All the World's Aircraft, 2004-2005
TYPE: Two-seat twin-turbine combat helicopter.
PROGRAMME: Developed from the basic Mi-28 to add night/all-weather capability. Versions for naval amphibious assault support and air-to-air missions projected. Russian Army funding announced January 1994; demonstrator (O14) modified from first prototype; first hover 14 November 1995; first flight 30 April 1997. Unofficially named Night Hunter and Night Pirate. Versions projected for naval amphibious assault support and air-to-air support. Description as Mi-28, unless shown otherwise.
DESIGN FEATURES: Longer main rotor blades with curved tips; new VR-29 transmission main gearbox; multiwindow chin fairing in place of nose sensor turret.
POWER PLANT: Two Klimov TV3-117VMA turboshafts, each rated at 1,863kW.
AVIONICS: IKBO integrated flight/weapons system, comprising optical/Low-Light Television (LLTV)/Forward-Looking Infra-Red (FLIR) aiming unit for the weapons operator; mast-mounted 360° millimetric-wave Phazotron Arbalet; Kinzhal-V radar system; laser range-finder; pilot's FLIR for night operation; helmet-mounted target indicator; night vision goggles; radio command guidance system for Shturm (AT-6 Spiral) anti-tank missiles; data presentation system with colour liquid crystal multifunction displays; inertial and GPS-type navigation subsystems. Vitebsk self-defence system, including Pastel radar warning unit, Mak infra-red, laser warning, Platan electronic jamming and UV-26 flare dispenser.
ARMAMENT: 2A42 single-barrel 30mm cannon mounted on moving NPPU-28 post with 250 rounds in two boxes; rotation within ±110° horizontally and +10°/-43° vertically. Two pylons under each stub-wing, each with capacity of 480kg; typically 9M114 Shturm (AT-6 Spiral) guided anti-tank missiles installed on two APU-8/4U launchers; up to eight Igla-V (SA-16 Gimlet) air-to-air missiles can also be carried; new type of short-range air-to-surface guided missile under development. Unguided weapons include free-fall bombs up to 500kg; KMGU submunition dispensers; UPK-23 and GUV pods with 80mm C-8, 130mm C-13 and 240mm C-24 rockets; and incendiary containers. Special containers for minelaying may also be fitted.
--Jane's Helicopter Markets and Systems
Technical data for Mi-28N
Crew: 2, main rotor diameter: 17.20m, fuselage length with a cannon: 17.01m, height: 3.82m, take-off weight: 11700kg, max speed: 320km/h, cruising speed: 270km/h, hovering ceiling: 3600m, range with 10500kg take-off weight: 500km, range with max fuel: 1000km, armament: 1 x 30mm cannon, 16 x "Shturm" or "Ataka" anti-tank missiles or 8 x "Igla-V" AA missiles
1982
--------------------------------------------------------------------------------
www.aviastar.org/helicopters_eng/mi-28.php
First flown in November 1982, and designed to fulfil the same role as the American AH-64 Apache which it generally resembles, the agile Mi-28 'Havoc' military helicopter was scheduled to enter full service with the CIS forces in 1992, but lost out to the Kamov Ka-50. The three prototypes had a conventional three-bladed tail rotor but this has since been replaced by a 'delta 3' x-configured rotor comprising two independent two-bladed propellers mounted on the same shaft. The gunner, seated in a heavily-armoured front cockpit ahead of the pilot, controls a 30mm cannon normally used on ground vehicles. This is mounted under the nose, which contains a low light level TV and FLIR night control systems. Stub wings, each fitted with two hardpoints, can carry AT-6 'Spiral' radio-guided ATMs, UV-20 pods, or fuel tanks. Infra-red suppressors and decoy dispensers are also fitted to the 'Havoc', which is designed to offer high survivability in battle.
--D.Donald "The Complete Encyclopedia of World Aircraft", 1997
TYPE: Attack helicopter.
PROGRAMME: Design started 1980 under Marat N Tishchenko; first of two flying Mi-28 prototypes (012) flew 10 November 1982; each prototype different: first and second (022) had upward-pointing exhaust diffusers and fixed undernose fairing for electro-optic equipment; first also had conventional three-blade tail rotor; second replaced this with the definitive "Delta-H" configuration. The first Mi-28A (032) introduced the definitive downward-pointing exhaust suppressors and flew in January 1988; second Mi-28A prototype (042) demonstrated at Moscow in 1992 and represented the intended production configuration. It had the definitive moving E-O sensor turret undernose, downward-pointing exhaust diffusers and wingtip electronics/chaff dispenser pods; small-scale pre-series production planned, but not initiated, by Rostvertol, Rostov-on-Don, which stated in mid-2001 that it was ready to begin series production.
CURRENT VERSIONS:
Mi-28: First two prototypes with 1,434kW TV3-117BM engines and VR-28 gearbox.
Mi-28A (Type 280): Basic version, as described in detail, Third and fourth aircraft built.
Mi-28N: (Nochnoy: Night): Unofficial names: Night Hunter and Night Pirate. Added night/all-weather operating capability. Russian Army funding announced January 1994; demonstrator (014) modified from first Mi-28 prototype (012); first hover 14 November 1995; formal roll-out 16 August 1996; first flight 30 April 1997. Mast-mounted 360° scan millimetre wave Kinzhal V or Arbalet radar (pod soon enlarged in vertical plane); FLIR ball beneath missile-guidance nose radome and above new shuttered turret for optical/laser sensors, including Zenit low-light-level TV. EFIS cockpit. Armament of production version to include 9M114 Shturm (AT-6 'Spiral') or 9M120 Vikhr/Ataka (AT-12 'Swinger') ASMs and Igla (SA-16 'Gimlet') AAMs and R-73 AAMs. New composites rotor with sweptback blade tips added subsequently. Mi-28N introduced uprated VR-29 transmission and IKBO integrated flight/weapon aiming system, with automatic terrain-following and automatic target search, detection, identification and (in formations of Mi-28Ns) allocation; Ramenskoye Breo-28N mission control system.
Second prototype Mi-28N due for completion in first quarter of 2003 and will undertake bulk of state testing, which expected to occupy minimum of three and maximum of five years, after which it is intended to begin quantity production for the Russian armed forces and export customers.
Total of five trials Mi-28Ns to be built by Rostvertol; TV3-117VMA engines initially, but 1,839kW Klimov VK-2500s to be installed later. Second helicopter funded jointly by Rostvertol and Southwest Sberbank.
Versions projected for naval amphibious assault support and air-to-air missions.
Mi-28NEh: (Nochnoy, Ehksport: Night, Export): Version of above offered to South Korea in 2000. Evaluated by Swedish Army in 2001 against Boeing AH-64 Apache and Eurocopter Tiger.
COSTS: Mi-28N development cost US$150 million (2000); unit cost approximately US$15 million to US$16 million (2002).
DESIGN FEATURES: Conventional gunship configuration, with two crew in stepped cockpits; original three-blade tail rotor superseded by low noise 'scissors' or "Delta-H" type comprising two independent two-blade rotors set as narrow X (35°/145°) on same shaft with self-lubricating bearings; resulting flapping freedom relieves flight loads; agility enhanced by doubling hinge offset of main rotor blades compared with Mi-24; survivability emphasised; crew compartments protected by titanium and ceramic armour and armoured glass transparencies; single hit will not knock out both engines; new composites main rotor can withstand hit from round of up to 30mm calibre; vital units and parts are redundant, widely separated and shielded by the less vital; multiple self-sealing fuel tanks in centre-fuselage enclosed in composites second skin, outside metal fuselage skin; no explosion, fire or fuel leakage results if tanks hit by bullet or shell fragment; energy absorbing seats and landing gear protect crew in crash landing at descent rate of 12m/s; crew doors are rearward-hinged, to open quickly and remain open in emergency; parachutes are mandatory for Russian Federation and Associated States (CIS) military helicopter aircrew; if Mi-28 crew had to parachute, emergency system would jettison doors, blast away stub-wings, and inflate bladder beneath each door sill; as crew jumped, they would bounce off bladders and clear main landing gear; no provision for rotor separation; port-side door, aft of wing, provides access to avionics compartment large enough to permit combat rescue of two or three persons on ground, although it lacks windows, heating and ventilation.
Hand crank, inserted into end of each stub-wing, enables stores of up to 500kg to be winched on to pylons without hoists or ground equipment; current 30mm gun is identical with that of RFAS army ground vehicles and uses same ammunition; jamming averted by attaching twin ammunition boxes to sides of gun mounting, so that they turn, elevate and depress with gun; main rotor shaft has 5° forward tilt, providing tail rotor clearance; transmission capable of running without oil for 20 to 30 minutes; main rotor rpm 242; with main rotor blades and wings removed, helicopter is air-transportable in An-22 or Il-76 freighter.
FLYING CONTROLS: Hydraulically powered mechanical type; horizontal stabiliser linked to collective; controls for pilot only.
STRUCTURE: Five-blade main rotor; blades have very cambered high-lift section and sweptback tip leading edge; full-span upswept tab on trailing-edge of each blade; structure comprises numerically controlled, spirally wound glass fibre D-spar, blade pockets of Kevlar-like material with Nomex-like honeycomb core, and titanium erosion snip on leading-edge; each blade has single elastomeric root bearing, mechanical droop stop and hydraulic drag damper; four-blade GFRP tail rotor with elastomeric bearings for flapping; rotor brake lever on starboard side of cockpit; strong and simple machined titanium main rotor head with elastomeric bearings, requiring no lubrication; power output shafts from engines drive main gearbox from each side; tail rotor gearbox, at base of tail pylon, driven by aluminium alloy shaft inside composites duct on top of tailboom; sweptback mid-mounted wings have light alloy primary box structure, leading- and trailing-edges of composites; no wing movable surfaces; provision for countermeasures pod on each wingtip, housing chaff/flare dispensers and sensors, probably RWR; light alloy semi-monocoque fuselage, with titanium armour around cockpits and vulnerable areas; composites access door aft of wing on port side; swept fin has light alloy primary box structure, composites leading- and trailing-edges; cooling air intake at base of fin leading-edge, exhaust at top of trailing-edge; two-position composites horizontal stabiliser.
LANDING GEAR: Non- retractable, tailwheel type; single wheel on each unit; mainwheel tyres size 720x320, pressure 5.40 bar; castoring tailwheel with tyre size 480x200.
POWER PLANT: Two Klimov TV3-117VMA turboshafts, each 1,636kW, in pod above each wingroot; three jetpipes inside downward-deflected composites nozzle fairing on each side of third prototype shown in Paris 1989; upward deflecting type also tested. Deflectors for dust and foreign objects forward of air intakes, which are de-iced by engine bleed air. Internal fuel capacity 1,720 litres. Provision for four external fuel tanks on underwing pylons.
ACCOMMODATION: Navigator/gunner in front cockpit; pilot behind, on elevated seat; transverse armoured bulkhead between; flat non-glint tinted transparencies of armoured glass; navigator/gunner's door on port side, pilot's door on starboard side.
SYSTEMS: Cockpits air conditioned and pressurised by engine bleed air. Duplicated hydraulic systems, pressure 152 bar. 208V AC electrical system supplied by two generators on accessory section of main gearbox, ensuring continued supply during autorotation. Low-airspeed system standard, giving speed and drift via main rotor blade-tip pitot tubes at -50 to +70km/h in forward flight, and ±70km/h in sideways flight. Main and tail rotor blades electrically de-iced. Ivchenko AI-9V APU in rear of main pylon structure supplies compressed air for engine starting and to drive small turbine for preflight ground checks.
AVIONICS: Comms: UHF/VHF nav/com; small IFF fairing each side of nose and tail.
Instrumentation: Conventional IFR instrumentation, with autostabilisation, autohover, and hover/heading hold lock in attack mode; pilot has HUD and centrally mounted CRT for basic TV; aircraft designed for use with night vision goggles.
Mission: Radio for missile guidance in nose radome. Daylight optical weapons sight and laser range-finder in gyrostabilised and double-glazed nose turret above gun, with which it rotates through ±110°; wiper on outer glass protects inner optically flat panel.
Self-defence: Two fixed IR sensors on initial basic production Mi-28; IR suppressors, radar and laser warning receivers standard; optional countermeasures pod on each wingtip, housing chaff/flare dispensers and sensors, probably RWR. Mi-28N has integrated Vitebsk DASS with Pastel RWR, Mak IR warning system, Platan jammer and UV-26 flare dispensers.
EQUIPMENT: Two slots, one above the other on port side of tailboom, for colour-coded identification flares. Three pairs of rectangular formation-keeping lights in top of tailboom; further pair in top of main rotor pylon fairing.
ARMAMENT: One 2A42 30mm turret-mounted gun (with 250 rounds in side-mounted boxes) in NPPU-28 mount at nose, able to rotate ±110°, elevate 13° and depress 40°; maximum rate of fire 900 rds/min air-to-air and air-to ground. (New specially designed gun under development.) Two pylons under each stub-wing, each with capacity of 480kg, typically for total of sixteen 9M114 Shturm C (AT-6 'Spiral') radio-guided tube-launched antitank missiles and two UB-20 pods of eighty 80mm S-8 or twenty 122mm S-13 rockets or two UPK-23-250 gun pods. Alternative ATMs include Shipunov 9M120/9M121F Vikhr/Ataka and 9A-2200; up to eight 9M39 Igla-V AAMs in place of ATMs; in minelaying role can carry two KGMU-2 dispensers. Main 2A42 gun fired and guided weapons launched normally only from front cockpit; unguided rockets fired from both cockpits. (When fixed, gun can also be fired from rear cockpit.)
--Jane's All the World's Aircraft, 2004-2005
Technical data for Mi-28
Crew: 2, engine: 2 x Klimov TV3-117VM turboshaft, rated at 1620kW, main rotor diameter: 17.2m, length with rotors turning: 21.6m, height: 3.82m, take-off weight: 11200kg, empty weight: 7000kg, fuel: 1337kg, max speed: 300km/h, cruising speed: 270km/h, rate of climb: 13.6m/s, service ceiling: 5800m, hovering ceiling: 3500m, range with max fuel: 460km
--------------------------------------------------------------------------------
Mil Mi-28N "Night Havoc", "Night Hunter"
1996
www.aviastar.org/helicopters_eng/mi-28n.php
The "Night Havoc" helicopter first flew in November 1996 and the test procedures are scheduled for completion during 1999. The Night Havoc helicopter retains most of the structural design of the Mi-28. The main difference is the installation of an integrated electronic combat system. Other modifications include the main gearbox for transmitting higher power to the rotor; new design of high efficiency blades with swept- shaped tips; an engine fuel injection control system for high power operating modes.
The main sensors of the integrated electronic combat system are the microwave radar antenna mounted above the rotor head and a FLIR (forward looking infrared) system. The integrated combat system uses onboard processing to display the helicopter location on a moving map indicator, and to show the flight, systems and target information on liquid crystal displays. The crew are equipped with night vision goggles.
-- www.airshow.ru
Added night/all-weather operating capability. Russian Army funding announced January 1994; demonstrator (014) modified from first Mi-28 prototype (012); first hover 14 November 1995; formal roll-out 16 August 1996; first flight 30 April 1997. Mast-mounted 360° scan millimetre wave Kinzhal V or Arbalet radar (pod soon enlarged in vertical plane); FLIR ball beneath missile-guidance nose radome and above new shuttered turret for optical/laser sensors, including Zenit low-light-level TV. EFIS cockpit. Armament of production version to include 9M114 Shturm (AT-6 'Spiral') or 9M120 Vikhr/Ataka (AT-12 'Swinger') ASMs and Igla (SA-16 'Gimlet') AAMs and R-73 AAMs. New composites rotor with sweptback blade tips added subsequently. Mi-28N introduced uprated VR-29 transmission and IKBO integrated flight/weapon aiming system, with automatic terrain-following and automatic target search, detection, identification and (in formations of Mi-28Ns) allocation; Ramenskoye Breo-28N mission control system.
Second prototype Mi-28N due for completion in first quarter of 2003 and will undertake bulk of state testing, which expected to occupy minimum of three and maximum of five years, after which it is intended to begin quantity production for the Russian armed forces and export customers.
Total of five trials Mi-28Ns to be built by Rostvertol; TV3-117VMA engines initially, but 1,839kW Klimov VK-2500s to be installed later. Second helicopter funded jointly by Rostvertol and Southwest Sberbank.
--Jane's All the World's Aircraft, 2004-2005
TYPE: Two-seat twin-turbine combat helicopter.
PROGRAMME: Developed from the basic Mi-28 to add night/all-weather capability. Versions for naval amphibious assault support and air-to-air missions projected. Russian Army funding announced January 1994; demonstrator (O14) modified from first prototype; first hover 14 November 1995; first flight 30 April 1997. Unofficially named Night Hunter and Night Pirate. Versions projected for naval amphibious assault support and air-to-air support. Description as Mi-28, unless shown otherwise.
DESIGN FEATURES: Longer main rotor blades with curved tips; new VR-29 transmission main gearbox; multiwindow chin fairing in place of nose sensor turret.
POWER PLANT: Two Klimov TV3-117VMA turboshafts, each rated at 1,863kW.
AVIONICS: IKBO integrated flight/weapons system, comprising optical/Low-Light Television (LLTV)/Forward-Looking Infra-Red (FLIR) aiming unit for the weapons operator; mast-mounted 360° millimetric-wave Phazotron Arbalet; Kinzhal-V radar system; laser range-finder; pilot's FLIR for night operation; helmet-mounted target indicator; night vision goggles; radio command guidance system for Shturm (AT-6 Spiral) anti-tank missiles; data presentation system with colour liquid crystal multifunction displays; inertial and GPS-type navigation subsystems. Vitebsk self-defence system, including Pastel radar warning unit, Mak infra-red, laser warning, Platan electronic jamming and UV-26 flare dispenser.
ARMAMENT: 2A42 single-barrel 30mm cannon mounted on moving NPPU-28 post with 250 rounds in two boxes; rotation within ±110° horizontally and +10°/-43° vertically. Two pylons under each stub-wing, each with capacity of 480kg; typically 9M114 Shturm (AT-6 Spiral) guided anti-tank missiles installed on two APU-8/4U launchers; up to eight Igla-V (SA-16 Gimlet) air-to-air missiles can also be carried; new type of short-range air-to-surface guided missile under development. Unguided weapons include free-fall bombs up to 500kg; KMGU submunition dispensers; UPK-23 and GUV pods with 80mm C-8, 130mm C-13 and 240mm C-24 rockets; and incendiary containers. Special containers for minelaying may also be fitted.
--Jane's Helicopter Markets and Systems
Technical data for Mi-28N
Crew: 2, main rotor diameter: 17.20m, fuselage length with a cannon: 17.01m, height: 3.82m, take-off weight: 11700kg, max speed: 320km/h, cruising speed: 270km/h, hovering ceiling: 3600m, range with 10500kg take-off weight: 500km, range with max fuel: 1000km, armament: 1 x 30mm cannon, 16 x "Shturm" or "Ataka" anti-tank missiles or 8 x "Igla-V" AA missiles